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A number of methods exist which generalize the Fourier transform

either by considering the class of Fast Unitary Transforms (which include

the FFT) or by considering group characters. The practical interest here

is in the computational efficiency inherent in these more general transforms.

For an arbitrary sequence of functions, the Gram-Schmidt process

generates a sequence of orthogonal functions. Any continuous function can

be expressed via this orthogonal set with minimum L2 error; for certain

classes of functions the convergence is uniform. Most inportant among these

are the Haar functions, which assume 2 values, and the Walsh functions with

values + 1. Both Both have discrete analogies and Fast Discrete Haar/Walsh

transforms are computable, FHT and FWT. Because of the simplicity of the

basic functions much greater computational savings can be obtained than from

FFT (up to 30 times faster than FFT).

Advantageous use can be made of FHT/FWT in certain applications; e.g.

in data transmission/reconstruction in which one represents a given signal

in some sense and reconstruct it from the minimal representation. A number

of serious difficulties arise with these transforms due to the fact that

the relation with the circle has been lost. For example: 1) no natural

interpretation in terms of frequency exists (the "sequency" viewpoint of

Harmuth for Walsh functions lacks physical meaning); 2) due to absence of

the circle relationship the important convolution theorem is not available

(forced analogies to a convolution theorem via dyadic convolutions have been

made but their interpretations are not clear).

The striking advantages of FWT and FHT over the usual FFT in computa-

tional effort should motivate further investigation in this area.

The historical situation regarding orthogonal functions at the

beginning of the twentieth century was one of well known and useful kinds of

such functions: the trigonometric functions which occur in Fourier series;

orthogonal polynomials such as those of Legendre, Hermite, and Laguerre;
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Bessel"s functions, the Sturm-Liouville series, and other special functions.

But, there was no general theory embracing all such systems of functions.

The Hungarian mathematician, Alfred Haar, was concerned with con-

vergence properties of series of orthogonal functions, and also constructing

a new set (now called the Haar system) of such functions. He defined a set

of orthogonal functions each taking essentially only two values such that

the formal expansion of an arbitrary continuous function in those functions

converges uniformly to the given function, a property not possessed by

orthogonal sets known up to that time.

In 1923, J.L. Walsh published a set of orthogonal functions which

are complete on the interval [0.1]; they take only the values + 1, and are

similar in oscillation and many other properties to the trigonometric

functions. They have turned out to have important practical applications

in calculation.

The limits of the usefulness of these functions both in theoretical

work and in engineering applications still seem to be undetermined.

Traditionally, the theory of communication has been based on the

complete, orthogonal system of sine and cosine functions. The concept of

frequency is defined as the parameter f in sin 2u ft. and cos 2T ft. The

question arises whether there are other systems of functions on which

theories of similar scope can be based, and that lead to equipment of

practical interest.

The parameter in V'sin 21nO and /rcos 21Te gives the number of

oscillations in the interval -1/2!i84/2 (that is, the normalized frequency

i=fT). One may interpret i as "one half the number of zero crossings per

unit time" rather than as "oscillations per unit time". (The zero crossing

at the left side, e - -1/2, but not the one at the right side, 0 +1/2, of

the time interval is counted for sine functions).
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The parameter i also equals one half the number of zero crossings in

the interval -1/21 El '1/2 for Walsh functions. In contrast to sine-cosine

functions, the sign changes are not equidistant. If i is not an integer,

then it equals "one half the average number of zero crossings per unit time".

The term "normalized sequency" has been introduced for L and 0 - i/T is

called the normalized sequency. Sequency in zps - 1/2 (average number of

zero crossings per second).

The general form of a sine function V sin (2nft+o contains the

parameters amplitude V, frequency f, and phase angle a. The general form
of a Walsh function V sal (CT, t/T + t /T) contains the parameters amplitude,

V, sequency, 0 , the delay, to, and time base, T. The normalized delay,

t /T, corresponds to the phase angle. The time base, T, is an additionalo

parameter and it causes a major part of the differences in the applications

of sine-cosine and Walsh functions.

So far, Walsh functions are the only known functions with desirable

features comparable to sine-cosine functions for use in communications.

Development of semi-conductor technology has imparted practical interest

in them at this time. Generally'speaking, the transition from sine-cosine

functions to other complete systems means a transition from linear, time-

invariant components and equipment to linear, time-variable components and

equipment, which, of course, constitute a much larger class. The mathemati-

cal theory of Walsh-Fourier analysis corresponds to the Fourier analysis

used for sine-cosine functions. There is no theory of similar scope for

block pulses, because they are incomplete.

The sal and cal transforms of Walsh-Fourier analysis are defined by
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Walsh-Function Filters - For a sequency low pass filter based on Walsh

functions the input signal, F(O), is transformed into a step function.

Fttf(e), with steps of a certain width, by integrating F(O) during an interval

equal to the step width. The amplitudes of the steps are chosen so that

Ft-(e) yields a least-mean-square approximation of F(E). In addition,

Ft-(O) is delayed with respect to F(O) by one step width.

The number of samples obtained is equal to twice the cut-off

sequency. Hence, the sampling theorems of Fourier analysis permit the

comparison of frequency and sequency filters.

Theorems for the multiplications of Walsh functions have been

proven. These are:

cal (k, 8) cal (i, e) - calj k i, 91

sal (k, 8) cal (i, e) = salt i 6 (k-l) + 1,el

sal (k, 8) sal (i,E) - cal (k-]) (i-l),81

where the symboliindicates modulo 2 addition. Note that the product of

two Walsh functions yields only one Walsh function. Therefore, the amplitude

modulation of a Walsh carrier yields only one sequency sideband as compared

to the two sidebands obtained when a sine carrier is modulated. A typical

application of the multiplication theorems of Walsh functions is in the

design of sequency-bandpass filters.

Digital Filtering and Multiplexing - One of the most promising aspects of

Walsh functions is the case with which filters and multiplex equipment can

be implemented as digital circuits. The reason is that numerical Walsh-

Fourier transformation and numerical sequency shifting of signals require

summations and subtractions only. In the case of sine-cosine functions, the

corresponding operations require multiplications with irrational numbers.
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A digital filter based on Walsh functions can be readily obtained.

The input signal passes first through a sequency low-pass filter then

transforms it into a step function. This step function is sampled and the

samples are transformed into numbers by an analog/digital converter. A

series of these numbers is stored in a digital storage. A Walsh-Fourier

transform of this series is obtained by performing certain additions and

subtractions in an arithmetic unit. Some or all of the obtained co-

efficients, that represent sequency components, may be suppressed or

altered - in effect, a filtering process. An inverse Walsh-Fourier trans-

form yields the filtered signal as a series signal by digital/analog con-

verter. Since there is a fast Walsh-Fourier transform just as ther is a

fas Fourier transform, the arithmetic operations in a digital sequency filter

are not only simpler than in a digital frequency but can be performed faster.

One of the features of Walsh functions that makes them of some

interest in signal processing is the fact that their amplitudes are given

precisely by a single bit, so that their use does not directly contribute to

roundoff noise. The basis vectors of symmetry analysis offer the same

attraction with, additionally, for low orders of input data frames N, some

economy of computations by reason of the zeros.

OTHER IMAGE TRANSFORMS

The Fourier transform is the transform most often used in image

processing applications; there are other transforms which are also of

interest in this area.

The one-dimensional, discrete Fourier transform is one of a class

of important transforms which can be expressed in terms of the general

relation

N-1
T(u) E f(x)g(x,u) (5-1)

xO
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where T(u) is the transform of f(x), g(x,u) is the forward transformation

kernel, and u assumes values in the range 0, 1, ... , N-i. Similarly, the

inverse transform is given by the relation

N-1
f(x) E T(u)h(x,u) (5-2)

U0O

tahpre h(x,u) Is tha invers,- transfor-ation kernel an'4 x assumes values In~

the ranges 0, 1, ... , N-i. The nature of a transform is determined by the

properties of its transformation kernel.

For two dimensional square arrays the forward and inverse transforms

are given by the equations

N-i N-1

and

N-i N-i
f(x,y) = E Z T(u,v,)h(x,y,u,v) (5-4)

uO v-.0

where, as above, g(x,yu,v) and h(x,y,u,v) are called the forward and

inverse transformation kernels, respectively.

The two dimensional Fourier transform has the kernel

g(xOyOu,v) = ep [-j2TE (lix + vy) IN]

whiich is separable and syrmnetric since

g(xPygupv) 9 (X,U)g (y'v)

- exp f-2tuxINJ Fj ex 2TtvyINj
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It is easily shown that the inverse Fourier kernel is also separable and

symmetric.

A transform with a separable kernel can be computed in two steps,

each requiring a one dimensional transform. First, the onie dimensional

transform is taken along each row of f(x,y), yielding

N-i
T(x,v) Z E f(x,y)g 2 (y,v) (5-5)

y-O

for x,v - 0, 1, 2, ..., N-I. Next, the one dimensional transform is taken

along each column of T(x,v); this results in the expression

N-i
T(u,v) = E T(x,v)g1 (x,u) (5-6)

xO

for u,v = 0, 1, 2, ..., N-i. The same final results are obtained if the

transform is taken first along each column of f(x,y) to obtain T(y,u) and

then along each row of the latter function to obtain T(u,v). Similar

comments hold for the inverse transform if h(x,y,u,v) is separable.

If the kernel g(xy,u,v) is separable and symmetric, Eq. (5-3) can

also be expressed in the following matrix form:

T = AFA (5-7)

where F is the NXN image matrix, A is an NXN symmetric transformation matrix

with elements aij = g (i,J), and T is the resulting NXN transform for

values of u and v in the range, 0, 1, 2, ... , N-i.

To obtain the inverse transform we pre-multiply and post-multiply

Eq. (5-7) by an inverse transformation matrix B.
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If B - A -1 , it then follows that

F = BTB

which indicates that the digital image F can be recovered completely from
-1

its transform. If B is not equal to A , then we obtain an approximation

to F, given by the relation

F BAFAB

A number of transforms, including the Fourier, Walsh, and Haar

transforms, can be expressed in this form. An important property of the

resulting transformation matrices is that they can be decomposed into

products of matrices with fewer non-zero entries than the original matrix.

This result, first formulated by Good (1958) for the Fourier transform,

reduces redundancy and, consequently, the number of operations required to

implement a two-dimensional transform. The degree of reduction is equiva-

lent to that achieved by an FFT algorithm, being on the order of N log 2 N

multiply/add operations for each row or column of an NXN image.

Walsh Transform

When N = 2n, the discrete Walsh transform of a function f(x),

denoted by W(u), is obtained by substituting the kernel

1 n-1
g(x,u) - n (-1) b (x)bn (u) (5-8)N i = O1 n - -

into Eq. (5-1). In other words,

1 N-1 N-1

W-(u) Z f(x) (-1) bi(x)bn - l - i
( u )  (5-9)

x=O i=O
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where bk(z) is the kth bit in the binary representation of z. For example,

if n - 3 and z - 6 (110 in binary), we have that bo0 (z) = O,b1 (z) 1 1, and

b 2 (z) - 1.

The values of g(xu), excluding the 1/N constant term, are listed

below for N = 8. The array formed by the Walsh transformation kernel is

Values of the Walsh trans-
formation kernel for N 8.

1\7 0 1 2 3 4 S 6 7

0 * .~ . . . . 4

1 + + 4 + - - - -

2 + + - - + - -
3 + + - - + +

4 + -+- + - + -

+ +- + -+- +

6 - + + - +

7 + + - + + -

a symmetric matrix whose rows and columns are orthogonal. These properties,

which hold in general, lead to an inverse kernel which is identical to the

forward kernel, except for a constant multiplicative factor of 1/N. Thus,

the inverse Walsh transform is given by

N-I n-l
f(x) E W(u) H (-I) b1 (x)b nl-i(u) (5-10)

UMO i-0

Notice that, unlike the Fourier transform which is based on trigono-

metric terms, the Walsh transform consists of a series expansion of basis

functions whose values are either plus or minus one.

It is also of interest to note that the forward and inverse Walsh

transforms differ only by the 1/N term. Thus, any algorithm for computing

the forward transform can be used directly to obtain the inverse transform

simply by multiplying the result of the algorithm by N.
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The forward and inverse Walsh transforms are also equal given by

N-I N-I n-I
W(uv) N E E f(x,y) I (-I) bi(x)b n-li(u) + bi()b n-li(v)

x-0 y-O i=0
(5-11)

and

N-1 N-i n-I
f(x,y) = E W(u'v) U (-1) vi(x)bnl(u)+bi(Y)bn 1 (v)

f x n uO vnO i=O

(5-12)

Thus, any algorithm which is used to compute the two dimensional forward

Walsh transform can also be used without modification to compute the inverse

transform.

The Walsh transform can be computed by a fast algorithm identical iii

form to the successive doubling method for the FFT. The only difference is

that all exponential terms WN are set equal to one in the case of the fast

Walsh transform (FWT).

The Walsh transform is real, thus requiring less computer storage

for a given problem than the Fourier transform, which is in general complex

valued.
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